Emergent Chemical Behavior in Variable-Volume Protocells
نویسندگان
چکیده
Artificial protocellular compartments and lipid vesicles have been used as model systems to understand the origins and requirements for early cells, as well as to design encapsulated reactors for biotechnology. One prominent feature of vesicles is the semi-permeable nature of their membranes, able to support passive diffusion of individual solute species into/out of the compartment, in addition to an osmotic water flow in the opposite direction to the net solute concentration gradient. Crucially, this water flow affects the internal aqueous volume of the vesicle in response to osmotic imbalances, in particular those created by ongoing reactions within the system. In this theoretical study, we pay attention to this often overlooked aspect and show, via the use of a simple semi-spatial vesicle reactor model, that a changing solvent volume introduces interesting non-linearities into an encapsulated chemistry. Focusing on bistability, we demonstrate how a changing volume compartment can degenerate existing bistable reactions, but also promote emergent bistability from very simple reactions, which are not bistable in bulk conditions. One particularly remarkable effect is that two or more chemically-independent reactions, with mutually exclusive reaction kinetics, are able to couple their dynamics through the variation of solvent volume inside the vesicle. Our results suggest that other chemical innovations should be expected when more realistic and active properties of protocellular compartments are taken into account.
منابع مشابه
Sufficient conditions for emergent synchronization in protocell models.
In this paper, we study general protocell models aiming to understand the synchronization phenomenon of genetic material and container productions, a necessary condition to ensure sustainable growth in protocells and eventually leading to Darwinian evolution when applied to a population of protocells. Synchronization has been proved to be an emergent property in many relevant protocell models i...
متن کاملCompositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies.
Mutually catalytic sets of simple organic molecules have been suggested to be capable of self-replication and rudimentary chemical evolution. Previous models for the behavior of such sets have analyzed the global properties of short biopolymer ensembles by using graph theory and a mean field approach. In parallel, experimental studies with the autocatalytic formation of amphiphilic assemblies (...
متن کاملSynthetic cellularity based on non-lipid micro-compartments and protocell models.
This review discusses recent advances in the design and construction of protocell models based on the self-assembly or microphase separation of non-lipid building blocks. We focus on strategies involving partially hydrophobic inorganic nanoparticles (colloidosomes), protein-polymer globular nano-conjugates (proteinosomes), amphiphilic block copolymers (polymersomes), and stoichiometric mixtures...
متن کاملUbiquitous "glassy" relaxation in catalytic reaction networks.
Study of reversible catalytic reaction networks is important not only as an issue for chemical thermodynamics but also for protocells. From extensive numerical simulations and theoretical analysis, slow relaxation dynamics to sustain nonequlibrium states are commonly observed. These dynamics show two types of salient behaviors that are reminiscent of glassy behavior: slow relaxation along with ...
متن کاملCurrent Ideas about Prebiological Compartmentalization
Contemporary biological cells are highly sophisticated dynamic compartment systems which separate an internal volume from the external medium through a boundary, which controls, in complex ways, the exchange of matter and energy between the cell's interior and the environment. Since such compartmentalization is a fundamental principle of all forms of life, scenarios have been elaborated about t...
متن کامل